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Abstract—The fluid flow and heat transfer characteristics of a fully-developed forced convective flow in a
cylindrical packed tube with symmetric heating are analyzed in this paper. The Darcy-Brinkman-Ergun
model is used as the momentum equation, with the radial porosity variation of the packed column
approximated by an exponential function. The method of matched asymptotic expansions is applied to
construct a composite solution for the axial velocity profile of a hydrodynamically fully-developed flow.
The interaction of inertial and wall channeling effects on the pressure drop and the axial velocity profile is
illustrated. The effects of radial thermal dispersion and variable stagnant thermal conductivity are taken
into consideration in the energy equation for a thermally fully-developed flow in the packed tube, which
is heated circumferentially with constant heat flux or constant wall temperature. A wall function is used
to model the wall effect on the transverse thermal dispersion process, and the predicted Nusselt numbers
agree with existing experimental data. Numerical results of the corresponding heat transfer characteristics
in the packed tubes, without introducing the wall function, are also presented for comparison.
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1. INTRODUCTION

DURING the past 50 years, a considerable amount
of experimental work has been performed on forced
convection in packed columns [1, 2]. The purpose of
these experiments was to obtain correlation equations
of the effective thermal conductivity and heat transfer
rate for the design of wall-cooled catalytic reactors.
From the early experimental data, it was observed
that steep radial temperature gradients, resembling a
temperature discontinuity, usually exist in a packed
column near a heated or cooled wall [3, 4]. To account
for the localized thermal resistance near the wall,
Coberly and Marshall [5] introduced the concept of
a wall heat transfer coeflicient 4,, which is defined as
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where T¥ is the wall temperature, r¥ the radius of
the packed column, and k% is the effective radial
thermal conductivity of the packed bed. The values of
k¥* and A, (both assumed to be constant and inde-
pendent of position) as a function of the Reynolds
number Re, (based on particle diameter d,) were
determined simultaneously by matching the tem-
perature data with a theoretical model that assumes
a plug flow (i.e. a flat velocity profile) with the thermal
boundary condition given by equation (1). The radial
variations in the thermal conductivity, axial velocity
and porosity near the wall are lumped together and
accounted for by a wall heat transfer coefficient in

equation (l)—hence the name ‘lumped parameter
model’. Using this method for the analysis of exper-
imental data, it was found while the effective radial
thermal conductivity can be correlated as a linear
function of Re,, the exponent of Re,in the correlation
equation for the Nusselt number ranges from 0.33 to
1.0 as reported by different investigators [1, 2].

The lumped parameter model has been widely used
for the simulation of the performance of wall-cooled
catalytic reactors. Recent studies, however, show that
these numerical models often over-predict the tem-
perature of hot spots in the reactors [6, 7]. The dis-
parity of the predicted and experimentally determined
temperature distributions in these wall-cooled cata-
lytic reactors has been attributed to the unrealistic
assumption of a constant effective radial thermal con-
ductivity in the lumped parameter model, and the
widely scattered correlation equations for the wall
heat transfer coefficient used in equation (1).

The fact that the local effective radial thermal con-
ductivity is reduced drastically near the wall is well
known since the early experiment conducted by
Kwong and Smith [8]. Thus, in the recent numerical
models by Finlayson [9] and by Botterill and Denloye
[10], a reduced value of k% within 1d, away from the
wall is used. As a result, the concept of a wall heat
transfer coefficient is not needed and the artificial
boundary condition given by equation (1) need not be
imposed. This is the so-called ‘distributed parameter
model’ for the simulation of the performance of a
wall-cooled catalytic reactor in the chemical engin-
eering literature. In a most recent model by Ahmed
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NOMENCLATURE
a empirical constant in equations (4) r* radial coordinate
b empirical constant in equation (4b) r dimensionless radial coordinate
B, function defined in equation (50b) rg radius of the cylindrical packed
c, specific heat at constant pressure column
Co constant defined in equation (10) o dimensionless radius of the packed
C, empirical constant in equation (3) column
d, particle diameter Re,  Reynolds number defined in
D diameter of the tube equation (36)
D; empirical constant defined in Re,,  Reynolds number based on u¥
equation (51) T* temperature
F normalized coefficient of inertia defined T bulk temperature
in equation (7) T wall temperature
F* coefficient of inertia defined in U dimensionless outer velocity defined in
equation (4b) equation (16)
F% coefficient of inertia at infinity U,, U, first- and second-order outer velocity
F coefficient of inertia in the inner solution u dimensionless axial velocity defined in
F, F, first- and second-order coefficient of equation (7)
inertia in the inner solution Un dimensionless mean velocity defined in
h heat transfer coefficient defined in equation (38)
equation (44) u* axial velocity
h,, heat transfer coefficient defined in uk axial velocity at the center of the packed
equation (1) tube
K normalized permeability defined in u mean velocity
equation (7) u dimensionless inner velocity
K* permeability g, 4, first- and second-order inner velocities
K* permeability at the core x* axial coordinate.
R inner permeability function
130, K, first- and second-order inner Greek symbols
permeability function 0o dimensionless pressure gradient based
k¥ stagnant thermal conductivity of the on u¥
packed bed O dimensionless pressure gradient based
¥ thermal conductivity of the fluid phase on u}
k¥ thermal conductivity of the solid phase r constant defined in equation (34)
k¥ thermal dispersion conductivity Y ratio of particle diameter to radius of the
k¥ effective thermal conductivity in the packed column
radial direction £ small parameter, o/y
k.. dimensionless effective thermal 0 dimensionless temperature defined in
conductivity in the radial direction equation (41)
I wall function for transverse thermal A thermal conductivity ratio of the solid
dispersion phase to fluid phase
L length of the packed tube u* viscosity of the fluid
N inertial parameter in equation (8) p* density of fluid
N, empirical constant in equation (3) c perturbation parameter in equation (8)
Nu,  Nusselt number defined in equation (45) o* porosity of the packed bed
p* pressure o¥ porosity at the core of the packed bed
Pr Prandtl number of the fluid ¢ normalized porosity function
G heat flux at the wall é normalized inner porosity function
R dimensionless outer radial coordinate o, ¢, first- and second-order inner porosity
defined in equation (16) function
R dimensionless outer radial coordinate w empirical constant in equation (52).
defined in equation (24)

heat transfer characteristics are found in good agree-
ment with their experimental data of a catalytic bed.
In a series of papers [12-15], Cheng and co-workers

and Fahien [11], the value of k* is assumed to vary
linearly with the radial distance from the wall to a few
particle diameters away from the wall. The predicted
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have analyzed the wall effect on the transverse thermal
dispersion process in the forced convective flow
through packed columns heated asymmetrically. In
these analyses, the no-slip boundary condition and
the non-uniform porosity effects have been taken into
consideration. In order to match the predicted tem-
perature distribution and the Nusselt number with
existing experimental results [16, 17], it was found that
a wall function must be introduced to account for the
wall effect on the transverse thermal dispersion due to
a reduction in the lateral mixing of fluid. Without the
introduction of the wall function, the large tem-
perature gradient near the heated wall as observed
from experiments cannot be reproduced.

In this paper, the fluid flow and heat transfer
characteristics of a fully-developed forced convective
flow in cylindrical packed tubes with symmetric heat-
ing are analyzed. The Darcy-Brinkman-Ergun model
[18])is used as the momentum equation, with the radial
porosity variation approximated by an exponential
function. The effects of inertia and wall channeling on
the pressure drop and the axial velocity profile are
illustrated. The effects of transverse thermal dis-
persion and the variable stagnant thermal con-
ductivity are taken into consideration in the energy
equation for a thermally fully-developed flow in a
cylindrical packed tube heated with constant heat flux
or constant wall temperature. If a wall function is
used to model the wall effect on the transverse thermal
dispersion process, the predicted Nusselt numbers are
found in agreement with experimental data {19, 20].
Numerical results of the corresponding heat transfer
characteristics in the packed tube, without intro-
ducing the wall function, are also presented for com-
parison purposes.

2. HYDRODYNAMICALLY FULLY-DEVELOPED
FLOW IN A PACKED TUBE

Consider a steady incompressible flow through a
cylindrical packed tube with radius rg. If the flow is
considered to be hydrodynamically fully developed,
the momentum equation based on the Darcy-Brink-
man-Ergun model in a cylindrical coordinate system

{x*,r*)is [18]
pt1d [ du
+$;&Ga;
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where u* is the velocity in the x*-direction (i.e. the
axial direction), dp*/dx* is the externally imposed
pressure gradient, and p* and p* are the density and
axial viscosity of the fluid. ¢* is the porosity of the
packed column which can be approximated by an
exponential function of the form [21}
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where d, is the parameter diameter, C, =1, N, = 2,
and ¢* = 0.4 is the porosity at the core of the packed
column. For a packed-sphere bed, the permeability
K* and the dimensionless inertial coefficient are given
by [18]

¢*d} b
* — m and * = \W
where a = 150 and b = 1.75 are the empirical con-

stants [22]. The boundary conditions for equation (2)
are

(4a,b)

r*=0 w=uk (%)
u*=0 (6)

where u¥ is the velocity in the core of the packed
column.
We now define the following normalized variables:

¢ =¢*¢%, K=K¥KZ,

r=r*/d,

r¥=rf:

u = u*uX,
F= F*F%, O

where
K% = ¢2*d} ja(l1—¢% )’
and
b
F¥ =
(Vap2¥?)

Equations (2)-(6) in terms of the normalized variables

are
3+NF"2...0£ +o'2d du ®
KTJk T T era\ar
¢ =1+Ciexp[—N,(ro—1)] ®
¢3
SR A— 0
(e (-9 1o
F=g¢~ ¥ (11)
subject to the boundary conditions
r=0: u=1 (12)
r=1fy: u=0 (13)
where
- _ K5 (dp*
%o = 7 e \d*
b
V= Rew [a(l—qs:;)]
with
Re., = p*u%d./u*
9%
y=dp/r(’,“, Cm=1_¢:‘o

I TESAY _
o-\/((}bg)!dp—cw/\/a—&%&m

if¢* =04and a=150.
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Since the dimensionless pressure drop «, is a con-
stant (independent of r), we can determine its value
in the core region. In the core region (r = 0) where
the boundary friction effect is negligible and
u= ¢ =F=K=1,equation (8) becomes

1+N =a,,. (14)

Substituting equation (14) into equation (8) yields

u+NFu2-—1+N+02 d/ du (15)
TENTa ordr\"dr)

We now attempt to solve equation (15) and (9)-(11)
subject to boundary conditions (12) and (13) by the
method of matched asymptotic expansions under the
conditionse « 1,y <land e =o/y < 1.

2.1. The outer solution
For the variable porosity layer (i.e. the outer layer),
the following outer variables are defined :

R=(r§—r*)jd,=(ry—r) and U=u (16)

where ry = r§/d,. Equations (15) and (9) in terms of
the outer variables become

U NFU? ol d dU
E+'——'\/K =1 +N+4—“¢(r0—R) a[:(ro—R)a:I
an
¢=1+C,exp[—N,R] (18)

Equations (17) and (18) with equations (10) and (11)
are to be solved subject to the boundary condition

U=1 (19)
and R — 0, the outer solution must match with the
inner solution.

We now assume the following series expansions for
the outer variable U:

U= Uy+0oU,+0(c?).

R— w0

(20)

Substituting equation (20) into equation (17) yields
the following first-order outer problem:

U, NFU?
-+ =1+N 21
£+ @1
with the boundary condition given by
Row: Uy=1 (22)

and R - 0, U, must match with the first-order inner
solution. Equation (21) can be readily solved to give

1 \/1 4N(1+N)F)

2NF
JK
where F and K are given by equations (10) and (11).
The positive sign in front of the square root of equa-

tion (23) has been chosen so that boundary condition
(22) can be satisfied. [t is relevant to note that equation

Uy(R) = 23
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(23) is identical to the first-order outer solution of a
hydrodynamically fully-developed flow in a rect-
angular packed channel [15]. This implies that, to the
first-order, the geometry of the packed column has no
effect on the outer solution.

2.2. The inner solution
As in the previous work [15], the following inner
variables will now be introduced :

' \/(1+N)R _J+N)
g g

(rO_r)s

d=u, ¢=¢, F=F K=K (29

In terms of the above inner variables, equations (9)
and (15) become

A aN,ﬁ
¢=14+C exp|:——-——] (25)
: JA+N)
i NEP 1+N d
=+ —==(1+N)+ _
7 ( ) 7

v -
L Jaem

oR da
X|Vrog—————)— 26
[( *ya +N)>dR] @9
which are to be solved subject to the boundary con-
dition
R=0: a=0 27

and the matching condition from the outer solution.
We now assume the following series expansions for
the inner variables:

i = tiy+ o, +0(c?)
é=do+od, +0(c?)
K=Ri+0R,+0(c?)
F=F,+0F +0(?).

(28)

Substituting equations (28) into equations (25)-(27),
(10) and (11) gives the following first-order inner
problem :

$o=1+C, 29)
. é3
Ko=tire.a=¢p (30)
Fo=d¢3% 31
do  NF@§ (1+N) d
Sy on = (14+N) + -

A
oo \/(1+N)

oR dﬁo:l
x| {ro————)=—= 32
[< : ¢(1+N)> ak| ©¥
with boundary conditions given by
4i(0) =0 (33)

and the matching condition
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R-ow: @Ry =T
where
1 1 4AN(+N) .
- =+ \/(—.; -+ ———( )FO)
K, Ki \/Ko
I'=Uy0) = .
2NF0/\/KO

(34)

which is obtained from the outer solution given by
equation (23) by letting R — 0. Numerical solutions
of equations (29}-(34) can be obtained by the Runge-
Kutta method.

A composite solution for the axial velocity can be
constructed from the first-order inner and outer solu-
tions based on the multiplicative rule [23] as follows:

Us(R)io(R)
g = 2T

T + O(o)

(35)
where U,(R) is given by equation (23) and 4,(R) is
given by equations (29)-(34) which are functions of
Re,,. However, it will be more meaningful to express
the results in terms of a Reynolds number based on

the mean velocity u¥, i.c.
Re, = utd,/v = Re,, uy, (36)

where ¥ and u,, are dimensional and dimensionless
mean velocities defined as

2 {7
wr = ]_07 L rru*dr* a7
and
u:} 5 17y
Uy = i 2y A rudr. (38)

Equation (38) shows that u, is a function of both
Re, and y. It follows from the definitions that the
normalized axial velocity is given by

(39)

where u is given by equation (35) and u, is given
by equation (38). The normalized velocity given by
equation (39) vs the normalized coordinate (ro—r)/r,
is plotted in Fig. 1 for a variable-porosity cylindrical
packed column with y = 0.03 and 0.37 at different
values of Re, The dashed lines represent the nor-
malized axial velocity without inertial effect (& = 0),
while the solid lines represent those with inertial effect.
As in the previous work [15], the velocity overshoot
occurs at a distance about 0.14,-0.15d, away from the
wall. The peak velocity decreases as the value of y is
increased. It is interesting to note that the shape of
the axial profile depends on the value of Re, for
Re,; < 100, but is relatively independent of Re, for
Re, > 100.

The wall channeling effect on pressure drop will be
considered next. The dimensionless pressure gradient
based on the mean velocity is given by

w*u¥ = ufu,
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Fic. 1. Effects of wall channeling and inertia on dimen-
sionless axial velocity in a packed tube: (a) y = 0.03; (b)

y=0.37
K% dp* o,
m = wruk dx* = w = (1+N)/un, (40)

where u,, is given by equation (38). Equation (40) is
plotted as solid lines in Fig. 2 as a function of Re,
at three values of y (y =0.03, 0.074 and 0.37). For
comparison the pressure gradient in a constant
porosity (C = 0) cylindrical packed column is plotted
as dashed lines. As in the previous work [15], the
wall channeling effect on pressure gradient is more
pronounced in the Darcy and Forchheimer flow
regions {Re, < 100) than in the turbulent flow region
{Re,; > 100).

102

T T

10!

T T TTTIT

Am

e,

100

w1 1% Y 2 108 04
Red

Fi1G. 2. Effects of wall channeling on dimensionless pressure

gradient in a packed tube.



2378

3. THERMALLY FULLY-DEVELOPED FORCED
CONVECTION IN A PACKED TUBE

A thermally fully-developed flow in a tube with
symmetric heating is defined as [24]

00

i 41)

where

_TE-TH%, )
T—T(x")

with T¥ denoting the wall temperature and T the
bulk temperature defined as

£
2J‘ T*r*u* dr*
0

TH(x*) = “2)

utry¥?
The conservation of energy from a differential control
volume gives [24]

daT¥

dx*

24,
pusc,re

(43)

where g, is the heat flux at the wall, which is related
to the heat transfer coefficient by

4w = h(TE—TE). (44)

The Nusselt number for the present problem is
defined as

hd, qwd,

Nua = 3x = ra =19

45)
where k¥ is the thermal conductivity of the fluid and
2 [
T¥-T¥)= 4 2 *{[ (T} —T*yr*u*dr* (46)
Unto " Jo

which is obtained from equations (37) and (42).

Equations (41)-(46) are applicable for a thermally
fully-developed forced convective flow in a cylindrical
packed tube with constant heat flux or constant wall
temperature. The heat transfer characteristics of these
two cases will now be considered separately.

3.1. Constant heat flux
For a thermally fully-developed flow with constant
heat flux, it can be shown that [24]

oT*  dTy(x*)  dT¥(x*)
ox* dx*  dx*

2q,,
T (pey)rdut

CY)

where g,, is a constant. With the aid of the above
equation, the energy equation becomes

u* 2q, 1d<%ﬂﬂ>
— = == 3=\

ut rd  r*dr*  dr*

(48)

where kX is the effective radial thermal conductivity
which is defined as

k& =k+ki. 49
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In the above equation, k} is the stagnant thermal
conductivity of the packed column which is given by
the following semi-analytical expression [25]

K o 2AJ(1=9%)
k= VOO TR
B,A(A—1) A By+1 A(B,—1)
x[(A—Bof 1“(37)‘ 2~ A-B, } (302)
where
1__¢* 10/9
By, =1.25 o ) (for spherical particles)
(50b)

and

A =k*k} (50¢)

with k¥ denoting the thermal conductivity of the solid
particles. The quantity k% in equation (49) is the ther-
mal dispersion conductivity which is given by [14]

k¥/k¥ = Dy PrReyul (1)

where D is an empirical constant, Pr is the Prandtl
number of the fluid, and /is Van Driest’s wall function
for radial thermal dispersion which is given by [14]
[=1—g-t8-r"ed (52)
where o is an empirical constant. Equation (51) shows
that the wall effect on radial thermal dispersion comes
from two different sources. First, the presence of a
wall modifies the velocity distribution u because of
the no-slip boundary condition and the non-uniform
porosity effects. Secondly, the presence of a wall
would reduce the lateral mixing of fluid which is
modeled in terms of a wall function / (@ # 0). If the
presence of the wall has no effect on lateral mixing,
thenw =0and /= 1.
Equations (48)-(52) are to be solved subject to the
boundary conditions

a7*

a0

r¥ =

(53)
and
dar*
* _ k. _ L% —
r*=rg: k3 <dr*) G-

Imposing boundary condition (53), equation (48) can
be integrated twice to give

(54)

r 1
T*(x*, r*)—T¥(x*) = 2q, J‘_ W

[adiE 1

P *
xl:ou:‘r dr :|dr. (595)

Substituting the above equation into equations (46)
and (45) yields
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- e [ ur ru
3 - e
4y J; { J; ey l;[) . dr] dr} " dr

(56)

where k., = kX /k¥. With the aid of equations (56) and

{45), it can be shown that equation (55) becomes
g T ur

6(r)=2yNudJ: E[J; gd?’]dr. (57)

For prescribed values of w, Dy, Rey, Pr, y and A,

equation (56) can be used for the computation of the

Nusselt number for a thermally fully-developed forced

convective flow in a cylindrical packed tube with con-

stant heat flux. After the value of Nu, has been deter-

mined, equation (57) can be used for the computation

of the dimensionless radial temperature distribution
in the cylindrical packed tube.

3.2. Constant wall temperature
For the case of constant wall temperature, the
boundary condition at the wall is given by

r¥=r¥:. T*=TF (58)

and the symmetric boundary condition at the center-
line of the tube is given by equation (53). From
equations (41) and (45), it can be shown that the
energy equation in terms of 8 for this case is

id dé u
',': a;" {:I’kﬂ a] =-2 (;;‘) Nud 6 (59)

with boundary conditions given by
r= 1 8=0 (60}

y’
and
de

r=0, PP 0 (61)

Integrating equation (59) twice and imposing bound-
ary conditions (60) and (61) give

iy r
90") = 2y Nu, f %(;) U: 0 (}) rdr} ar (62)

which is an integral equation for §. Numerical solu-
tions of equation (62) can be obtained by iteration as
follows. For given values of w, Dy, Rey, Pr,y and A,
u/u,, is obtained from equations (35) and (38), and the
first estimated values of Nu{’ and 0¥(r) can be
obtained from the constant heat flux solution given by
equations (56) and (57). Substituting these estimated
values into the right-hand side of equation (62) gives
an improved dimensionless temperature distribution
8¢+ Y(p). The improved value of Nu§*™ " can be com-
puted according to

2379

) do\®
G+ o bl
Nu§ (k,, d’)r=l/y (63)

where

k 4o\ = —29? Nuf il AT
"dr = 1fy ] Uam

The iteration process terminates when

N+ D — Nu

< 1073,

3.3. Numerical results and discussion

Experiments for forced convection of air (Pr = 0.7
and k¥ = 0.027 W m~! K7') in cylindrical packed
columns composed of glass spheres (k* = 1.05 W m ™"
K ™'} heated circumferentially with constant heat flux
or constant wall temperature have been performed by
Quinton and Storrow [19] as well as by Verschoor and
Schuit [20], respectively. Since air (having a small
Prandtl number) was used as the heat transfer medium
and since the cylindrical packed tubes used in their
experiments have a relatively high length to tube dia-
meter ratio (L/D = 18.2 in Quinton and Storrow’s
experiment and L/D varies from 6 to 8.5 in Verschoor
and Schuit’s experiments), the thermal entrance length
effect on the average Nusselt numbers may be negli-
gibly small. Thus, the average Nusselt number pre-
dicted from the present analysis for a fully developed
flow can be compared with the experimental results
presented in refs. {19, 20].

For this purpose, computations for the Nusselt
numbers given by equations (56) and (63) cor-
responding to the experimental conditions were car-
ried out with @ = 1.5 and Dy = 0.17. These values of
w and D were determined recently by Cheng et al.
[15] by matching both the predicted temperature dis-
tribution and the Nusselt number with experimental
data for forced convection of water in a thermally
developing flow through a packed channel with asym-
metric heating [15]. For comparison purposes, com-
putations of equations (56) and (63) were also carried
out without a wall function (@ = 0). It was found that
with the values of @ = 0 and Dy = 0.05, the predicted
Nusselt numbers are also in reasonable agreement
with experimental data, as will be discussed below.
These findings confirm our previous experience that
for a given value of w, one can find a value of Dy such
that the predicted Nusselt numbers would match with
experimental data. However, different values of w
would give different radial temperature distributions
(see below for further discussion). Thus, a unique
set of values @ and Dy can only be determined by
matching both the radial temperature and surface
heat flux data.

Figure 3 is a comparison of the experimentally
determined Nusselt numbers [19] and the predicted
Nusselt numbers (with and without a wall function)
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FiG. 3. Comparison of predicted Nusselt numbers with experimental results [19] for a packed tube with
constant heat flux : (a) with wall function ; (b) without wall function.

in a packed tube with constant heat flux. Similar com-
parisons of results for forced convection in two
different sizes of packed tubes (D = 43 and 50 mm)
with constant wall temperature are presented in Figs.
4 and 5. In Fig. 4 the predicted Nusselt numbers
are computed with a wall function (@ = 1.5 and
Dy = 0.17) while in Fig. 5 the predicted Nusselt num-
bers are computed without a wall function (@ = 0 and
Dy = 0.05). It is seen from Figs. 3-5 that with the
exception of the case of D = 50 mm and 4, = 8 mm
in Fig. 4(b), the predicted Nusselt numbers with a wall
function are in better agreement with experimental
data.

Numerical results for the dimensionless radial tem-
perature distributions at different values of Re,and y
are presented in Fig. 6 for the case of constant heat
flux, and in Fig. 7 for the case of constant wall tem-
perature. The solid lines in these figures represent the

600
] la) w =15
: Dr=0.17
] A-388
5007 pe-07
4 D =43 mm
4004 7:0372(dp=80mm)

4 Y:0279{dp=60mm}
1 r=0232{dp=50mm}

2004
E O dp=8,
3 ® dp=b
_ © dp=5
10.0‘ ®dpsa,
E A dp=3.mm
0.0. T YT =TT T T YT
10! 102 10% 104
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computed radial temperature distributions with a wall
function {(w = 1.5 and D; = 0.17) while the dashed
lines are those without a wall function (w = 0 and
Dy = 0.05). As shown in these figures, the differences
in the predicted radial temperature distributions with
or without a wall function are small for low Reynolds
numbers (Re; < 100) or for low values of y (e.g
y = 0.03). However, for high Reynolds numbers or
high values of 7y, there are marked differences in the
shape of the radial temperature profile with or without
a wall function. Further, it is shown in these figures
that with a wall function the predicted temperature
profiles are flatter and the predicted wall temperature
gradients are steeper than those without a wall func-
tion; and that these effects are more pronounced as
the Reynolds number is increased. Unfortunately,
since no radial temperature data were taken by Quin-
ton and Storrow [19] or by Verschoor and Schuit [20],
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FiG. 4. Comparison of predicted Nusselt numbers based on @ = 1.5 and Dy = 0.17 with experimental
results [20] for two packed tubes with constant wall temperature: (a) D = 43mm; (b) D = 50 mm.
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FI1G. 5. Comparison of predicted Nusselt numbers based on w = 0 and Dy = 0.05 with experimental results
[20] for two packed tubes with constant wall temperature : (a) D = 43 mm; (b) D = 50 mm.

a comparison with experimental data cannot be made.
In comparison of Figs. 5 and 6, it is shown that the
value of y and the wall function have smaller effects
for the case of constant heat flux than that of constant
wall temperature. At high Reynolds numbers, the
dimensionless radial temperature profile (and conse-
quently the Nusselt number) becomes relatively inde-
pendent of the thermal boundary conditions at the
wall.

4. CONCLUDING REMARKS

The fluid flow and heat transfer characteristics of a
fully-developed forced convective flow in a cylindrical
packed tube heated circumferentially with constant
heat flux or constant wall temperature are analyzed
in this paper. The effects of non-Darcy and variable
porosity are taken into consideration in the momen-
tum equation, while the effects of transverse thermal
dispersion and variable stagnant thermal conductivity
are taken into consideration in the energy equation.
However, the dispersion viscosity effect is neglected
in the momentum equation. This is because no model
is presently available to take into consideration this
effect which is expected to be small. It was found that
if the values of w = 1.5 and D = 0.17 (determined in
a previous paper) are used in the expressions for the
transverse thermal dispersion conductivity, the pre-
dicted Nusselt numbers agree with the experimental
data. It is relevant to note that if no wall function is
introduced and if the values of w = 0 and Dy = 0.05
are used in the computations of the energy equation,
the predicted Nusselt numbers also agree reasonably
well with experimental data. However, the shape of
the temperature profiles, with or without a wall func-
tion, is markedly different from each other. This is
especially true at high Reynolds numbers or at high
particle to tube diameter ratios. These findings con-

firm our previous experience that the validity of the
wall function concept for modeling the wall effect on
the transverse thermal dispersion process can only be
assessed from experiments in which both the surface
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F1G. 6. Predicted dimensionless radial temperature profiles
in a packed tube with constant heat flux: (a) y = 0.03; (b)
y =0.37.
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FiG. 7. Predicted dimensionless radial temperature profiles
in a packed tube with constant wall temperature: (a) y =
0.03; (b) y =0.37.

heat flux and radial temperature distributions are
measured simultaneously.

It must be emphasized that there are a large number
of empirical constants used in the present analysis.
Thus, the computed heat transfer characteristics
depend not only on the values of w and Dy but also
on the values of ¢, b, C, and N, used in the com-
putations of velocity distribution. At the present time,
there exist considerable uncertainties in the value of
a, b, C, and N|. If any of these values is changed, the
values of w and D must be modified in order to match
with experimental data. For example, if N, = Sis used
in the computation of the velocity distribution, the
values of D =0.12 and w = 1.1 should be used so
that the predicted heat transfer characteristics would
match with experimental data.
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EFFETS DE LA DISPERSION THERMIQUE TRANSVERSALE SUR LA CONVECTION
FORCEE ETABLIE DANS LES LITS FIXES CYLINDRIQUES

Résumé—On étudie les caractéristiques de I’écoulement forcé et du transfert thermique dans un lit fixe
tubulaire avec chauffage symétrique. On utilise le modéle Darcy-Brinkman—Ergun avec variation radiale
de la porosité approchée par une fonction exponentielle. On construit une solution composite pour le profil
de vitesse axiale d’écoulement hydrodynamiquement établi. Est illustrée Pinteraction des effets d’inertie et
de paroi sur la perte de charge et sur le profil de vitesse radiale. Les effets de la dispersion transversale et
de la conductivité thermique variable sont pris en compte dans ’équation de I’énergie pour un écoulement
thermiquement développé dans le lit cylindrique qui est chauffé a flux constant ou a température constante
sur la circonférence. Le concept de longueur de mélange est utilisé pour modéliser I’effet de la paroi sur le
mécanisme de dispersion thermique transverse et les nombres de Nusselt calculés s’accordent bien avec les
données expérimentales existantes. Des résultats numériques sur les caractéristiques du transfert thermique
dans les colonnes fixes sans introduire le concept de longueur de mélange sont aussi présentés pour
permettre une comparaison.

EINFLUSS DES QUERGERICHTETEN WARMETRANSPORTES AUF DIE
VOLL-ENTWICKELTE ERZWUNGENE KONVEKTION IN ZYLINDRISCHEN
FULLKORPERSAULEN

Zusammenfassung—Strémung und Wirmeiibergang in einer voll-entwickelten erzwungenen Konvektions-
stromung in einer zylindrischen Fiillkérpersdule mit symmetrischer Beheizung werden untersucht. Das
Darcy-Brinkman-Ergun-Modell wird als Impulsgleichung benutzt, wobei die radiale Verdnderung
der Porositit in der Fiillkdrperkolonne durch eine Exponentialfunktion ndherungsweise beschrieben wird.
Die gekoppelte Auswirkung von Trigheit und Kanalbildung an der Wand auf den Druckabfall und das
axiale Geschwindigkeitsprofil wird gezeigt. Die Einfliisse des quergerichteten Warmetransportes und der
veranderlichen Wirmeleitfihigkeit im Ruhezustand werden in der Energiegleichung fiir die thermisch
voll-entwickelte Strémung in der Fiillkorpersdule beriicksichtigt. Die Beheizung erfolgt am Umfang mit
konstanter Wirmestromdichte oder konstanter Wandtemperatur. Das Verfahren der Mischungslénge wird
verwendet, um die Wandeffekte auf den quergerichteten Wérmetransport wiederzugeben. Die berechneten
Nusselt-Zahlen stimmen gut mit vorliegenden Versuchsergebnissen {iberein. Zum Vergleich werden auch
numerische Ergebnisse ohne Einfithren des Mischungsweg-Ansatzes vorgestellt.

BJIMAHHUE IMOINEPEYHON TEIJIONTPOBOAHOCTU HA IMOJIHOCTHIO PA3BUTYIO
BbIHYXXJEHHYIO KOHBEKIIMIO B LIMTMHAPHYECKHX KOJIOHHAX C
BHYTPEHHUMH HACAJTKAMH

Ammoramus—IIpoBefieH aHAJIM3 XapakTEPHCTHK Te4eHHs M TeltooOMeHa NpPH NOJHOCTBIO Pa3BHTOH
BLIHYXK/ICHHOM KOHBEKIHM B CHMMETPHYHO HArPeBaeMOil HIMHAPHIECKO# Tpy6e ¢ BHYTPEHHHMH Hacad-
kaMH. B KauecTBe ypaBHEHHs KOJIMYECTBAa IJBMMEHHsS HCMONb3OBajlack Mogenb Japcn-BphHEKMaHa—
DpryHa, a pagdaibHOe H3MEHEHHME MOPHCTOCTH 3ANOJHATENS B KOJOHHE ANNpPOKCHMHPOBAJIOCH €
NOMOLIBIO IKCNOHEHLMAIbHOR ¢ynkuuu. [Ipy nocTpoeHnH pellleHHs JUIA aKCHAJIBHOTO mpoduis cko-
POCTH rHAPOIUHAMMYECKH TTOJHOCTBIO Pa3BUTOIO TEYEHUS PUMEHEH METOA CPAaLLMBAEMBIX ACHMITOTH-
yeckux pa3iioxenuii. [loka3ano BiMsHUE B3aHMOMEHCTBHA HHEPIMOHHBIX H PHCTEHOUYHMBIX 3PdekToB Ha
nepenajg QaBjieHAA M NPOQHIb AKCHAILHON CKOPOCTH. B ypaBHEHHH 3HEPrHM IS TEPMHYECKH MOJIHOC-
THIO PAa3BHTOrO TEYEHHs B KOJIOHHE C 3aNOJHATENIEM TIPH MOCTOSHHOM N0 NEPHMETPY TEIUIOBOM MOTOKE
WIM OPH NOCTOAHHON TeMIepaType CTEHKH y4TeHbl 3(eKTH NoNepeyHol TEIIONPOBOAHOCTA U mEpe-
MEHHBIX 3HaveHHH kKo3¢(HuuHenTa TEIUIONPOBOAHOCTH B CTAIHOHapHOM ciyuae. Mcnone3yercs nonaTne
JUTHHBL CMEILEHHS I MOJEHPOBAHNS BIMAHAA MPUCTEHHBIX 3¢dekTOB HA IONEPEYHYIO TEIUIONPOBOA-
HOCTb. YCT4HOBIIEHO, YTO TeopeTHdeckue ynciaa HyccenbTa cornacyiorcs ¢ HMEIOIMMHCH 3KCNIEPHMEH-
TaJIbHLIMH JAHHBIMH. J[JIS CpaBHEHHA NPHMBOIATCA TaKXe Pe3yJbTATRI YHCIEHHOrO HCCIeNOBaHHA
COOTBETCTBYIOLMX TEIIOOOMEHHBIX XapaKTEPHCTHK B KOJIOHHaX C 3aIOJHHTENEM, KOrJa KOHUETIMS
JUTHHBI CMEILEHHs He HCTIOJIL30BaJIaCh.
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