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Abstract-The fluid flow and heat transfer characteristics of a fully-developed forced convective flow in a 
cylindrical packed tube with symmetric heating are analyzed in this paper. The Darcy-Brinkman-Ergun 
model is used as the momentum equation, with the radial porosity variation of the packed column 
approximated by an exponential function. The method of matched asymptotic expansions is applied to 
construct a composite solution for the axial velocity profile of a hydrodynamically fully-developed flow. 
The interaction of inertial and wall channeling effects on the pressure drop and the axial velocity profile is 
illustrated. The effects of radial thermal dispersion and variable stagnant thermal conductivity are taken 
into consideration in the energy equation for a thermally fully-developed flow in the packed tube, which 
is heated circumferentially with constant heat flux or constant wall temperature. A wall function is used 
to model the wall effect on the transverse thermal dispersion process, and the predicted Nusselt numbers 
agree with existing experimental data. Numerical results of the corresponding heat transfer characteristics 

in the packed tubes, without introducing the wall function, are also presented for comparison. 

1. INTRODUCTION 

DURING the past 50 years, a considerable amount 
of experimental work has been performed on forced 
convection in packed columns [ 1, 21. The purpose of 
these experiments was to obtain correlation equations 
of the effective thermal conductivity and heat transfer 
rate for the design of wall-cooled catalytic reactors. 
From the early experimental data, it was observed 
that steep radial temperature gradients, resembling a 
temperature discontinuity, usually exist in a packed 
column near a heated or cooled wall [3,4]. To account 
for the localized thermal resistance near the wall, 
Coberly and Marshall [5] introduced the concept of 
a wall heat transfer coefficient h, which is defined as 

= h,(T,*- T*),.+ (1) 

where Tz is the wall temperature, rt the radius of 
the packed column. and k,*, is the effective radial 
thermal conductivity of the packed bed. The values of 
kz and h, (both assumed to be constant and inde- 
pendent of position) as a function of the Reynolds 
number Re, (based on particle diameter d,) were 
determined simultaneously by matching the tem- 
perature data with a theoretical model that assumes 
a plug flow (i.e. a flat velocity profile) with the thermal 
boundary condition given by equation (1). The radial 
variations in the thermal conductivity, axial velocity 
and porosity near the wall are lumped together and 
accounted for by a wall heat transfer coefficient in 

equation (I)-hence the name ‘lumped parameter 
model’. Using this method for the analysis of exper- 
imental data, it was found while the effective radial 
thermal conductivity can be correlated as a linear 
function of Re,, the exponent of Re, in the correlation 
equation for the Nusselt number ranges from 0.33 to 
1.0 as reported by different investigators [I, 21. 

The lumped parameter model has been widely used 
for the simulation of the performance of wall-cooled 
catalytic reactors. Recent studies, however, show that 
these numerical models often over-predict the tem- 
perature of hot spots in the reactors [6, 71. The dis- 
parity of the predicted and experimentally determined 
temperature distributions in these wall-cooled cata- 
lytic reactors has been attributed to the unrealistic 
assumption of a constant effective radial thermal con- 
ductivity in the lumped parameter model, and the 
widely scattered correlation equations for the wall 
heat transfer coefficient used in equation (1). 

The fact that the local effective radial thermal con- 
ductivity is reduced drastically near the wall is well 
known since the early experiment conducted by 
Kwong and Smith [8]. Thus, in the recent numerical 
models by Finlayson [9] and by Botterill and Denloye 
[lo], a reduced value of kz within id, away from the 
wall is used. As a result, the concept of a wall heat 
transfer coefficient is not needed and the artificial 
boundary condition given by equation (1) need not be 
imposed. This is the so-called ‘distributed parameter 
model’ for the simulation of the performance of a 
wall-cooled catalytic reactor in the chemical engin- 
eering literature. In a most recent model by Ahmed 
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NOMENCLATURE 

Z 
empirical constant in equations (4) r* radial coordinate 
empirical constant in equation (4b) r dimensionless radial coordinate 

B0 function defined in equation (Sob) ro* radius of the cylindrical packed 

CP specific heat at constant pressure column 

c, constant defined in equation (10) r0 dimensionless radius of the packed 
C1 empirical constant in equation (3) column 

d, particle diameter Red Reynolds number defined in 
D diameter of the tube equation (36) 
DT empirical constant defined in Re, Reynolds number based on u$ 

equation (5 1) T* temperature 
F normalized coefficient of inertia defined Tb* bulk temperature 

in equation (7) T,* wall temperature 
F* coefficient of inertia defined in u dimensionless outer velocity defined in 

equation (4b) equation (16) 

F% coefficient of inertia at infinity U,, U, first- and second-order outer velocity 
P coefficient of inertia in the inner solution u dimensionless axial velocity defined in 
Fo, E, first- and second-order coefficient of equation (7) 

inertia in the inner solution U, dimensionless mean velocity defined in 
h heat transfer coefficient defined in equation (38) 

equation (44) u* axial velocity 

h, heat transfer coefficient defined in * UC.? axial velocity at the center of the packed 
equation (1) tube 

K normalized permeability defined in * uZ-0 mean velocity 
equation (7) ti dimensionless inner velocity 

K* permeability 
1 uo, li, first- and second-order inner velocities 

KZ permeability at the core X* axial coordinate. 
R inner permeability function 
k, R, first- and second-order inner Greek symbols 

permeability function &cl dimensionless pressure gradient based 

kd* stagnant thermal conductivity of the on uz 
packed bed a, dimensionless pressure gradient based 

k: thermal conductivity of the fluid phase on uf 

k: thermal conductivity of the solid phase I- constant defined in equation (34) 

kT* thermal dispersion conductivity Y ratio of particle diameter to radius of the 

k:, effective thermal conductivity in the packed column 
radial direction & small parameter, a/r 

k er dimensionless effective thermal e dimensionless temperature defined in 
conductivity in the radial direction equation (41) 

I wall function for transverse thermal A thermal conductivity ratio of the solid 
dispersion phase to fluid phase 

L length of the packed tube W+ viscosity of the fluid 
N inertial parameter in equation (8) P* density of fluid 

N, empirical constant in equation (3) cr perturbation parameter in equation (8) 

N&f Nusselt number defined in equation (45) porosity of the packed bed 

P* pressure ;; porosity at the core of the packed bed 
Pr Prandtl number of the fluid normalized porosity function 

4W heat flux at the wall $ normalized inner porosity function 
R dimensionless outer radial coordinate Jo, 4, first- and second-order inner porosity 

defined in equation (16) function 
R dimensionless outer radial coordinate 0 empirical constant in equation (52). 

defined in equation (24) 

and Fahien [l 11, the value of kz is assumed to vary heat transfer characteristics are found in good agree- 
linearly with the radial distance from the wall to a few ment with their experimental data of a catalytic bed. 
particle diameters away from the wall. The predicted In a series of papers [12-l 51, Cheng and co-workers 
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have analyzed the wall effect on the transverse thermal 
dispersion process in the forced convective flow 
through packed columns heated asymmetrically. In 
these analyses, the no-slip boundary condition and 
the non-uniform porosity effects have been taken into 
consideration. In order to match the predicted tem- 
perature distribution and the Nusselt number with 
existing experimental results [l&17], it was found that 
a wall function must be introduced to account for the 
wall effect on the transverse thermal dispersion due to 
a reduction in the lateral mixing of fluid. Without the 
introduction of the wall function, the large tem- 
perature gradient near the heated wall as observed 
from experiments cannot be reproduced. 

In this paper, the fluid flow and heat transfer 
characteristics of a fully-developed forced convective 
flow in cylindrical packed tubes with symmetric heat- 
ing are analyzed. The Darcy-Brinkman-Ergun model 
[ 181 is used as the momentum equation, with the radial 
porosity variation approximated by an exponential 
function. The effects of inertia and wall channeling on 
the pressure drop and the axial velocity profile are 
illustrated. The effects of transverse thermal dis- 
persion and the variable stagnant thermal con- 
ductivity are taken into consideration in the energy 
equation for a thermally fully-developed flow in a 
cylindrical packed tube heated with constant heat flux 
or constant wall temperature. If a wall function is 
used to model the wall effect on the transverse thermal 
dispersion process, the predicted Nusselt numbers are 
found in agreement with experimental data f19, 201. 
Numerical results of the corresponding heat transfer 
characteristics in the packed tube, without intro- 
ducing the wall function, are also presented for com- 
parison purposes. 

2. HYDRODYNAMICALLY FULLY-DEVELOPED 

FLOW IN A PACKED TUBE 

Consider a steady incompressible flow through a 
cylindrical packed tube with radius r$. If the flow is 
considered to be hydrodynamically fully developed, 
the momentum equation based on the Darcy-Brink- 
man-Ergun model in a cylindrical coordinate system 
(s*,r*) is [18] 

p*u* p*F*up2 
p= 

K* + JK* 

(2) 
where u* is the velocity in the x*-direction (i.e. the 
axial direction), dp*/dx* is the externally imposed 
pressure gradient, and p* and p* are the density and 
axial viscosity of the fluid. $* is the porosity of the 
packed column which can be approximated by an 
exponential function of the form [21] 

~*=~~{l+C,exp[-Ni(~~~~~*‘]) (3) 

where d, is the parameter diameter, C, = 1, N, = 2, 
and 4% = 0.4 is the porosity at the core of the packed 
column. For a packed-sphere bed, the permeability 
K* and the dimensionless inertial coefficient are given 

by [181 

K* = $yi& and F* = & (4a,b) 

where a = 150 and b = I .75 are the empirical con- 
stants 1221. The boundary conditions for equation (2) 
are 

r*=(): a*=u* 5 

r* -_ r** 0 * u* = 0 

(3 

(6) 

where u*, is the velocity in the core of the packed 
column. 

We now define the following normalized variables : 

u = ti*/u*,, b, = Qi*/i$z, K= K*]K:, 

F = F*/F* 
(7) 

*l Y = P/d, 

where 

and 

b 
F’ = (J&;3’2)’ 

Equations (2t(6) in terms of the normalized variables 
are 

u NFu2 

?---= JK 

# = l+C, exp[-N,(r,-r)] 

j-= 4-312 

subject to the boundary conditions 

r=O: u=l 

r= l/y: u=O 

where 

with 

Re, = p*u*,d,/p* 

KS CT= 
J(--> 

i 
rp*, i 

dP = c&/a = 0.0544 

if+: =0.4anda= 150. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Since the dimensionless pressure drop g, is a con- 
stant (independent of r), we can determine its value 
in the core region. In the core region (r = 0) where 
the boundary friction effect is negligible and 
u = 4 = F = K = 1, equation (8) becomes 

l+N= LX,. (14) 

Substituting equation (14) into equation (8) yields 

(15) 

We now attempt to solve equation (15) and (9)-( 11) 
subject to boundary conditions (12) and (13) by the 
method of matched asymptotic expansions under the 
conditions u << 1, y < 1 and E = a/y << 1. 

2.1. The outer solution 
For the variable porosity layer (i.e. the outer layer), 

the following outer variables are defined : 

R = (r,*--r*)/d, = (r,,-r) and U= u (16) 

and H. ZHU 

(23) is identical to the first-order outer solution of a 
hydrodynamically fully-developed flow in a rect- 
angular packed channel [ 151. This implies that, to the 
first-order, the geometry of the packed column has no 
effect on the outer solution. 

2.2. The inner solution 
As in the previous work [ 151, the following inner 

variables will now be introduced : 

12 = J(1R _ J(l+N)(ro_r), 
u u 

li = u, $ = 4, P = F, k = K. (24) 

In terms of the above inner variables, equations (9) 
and (15) become 

J= l+C,exp - [ &] (25) 

NPZ2 
;+-= 

Ji 
(l+N) + ;r 

where r0 = r,*/d,. Equations (15) and (9) in terms of 
the outer variables become 

U NFU= 

z+ 
-----=l+N+ 
JK ,(r;&j[(ro-R)g] 

(17) 

4= l+C,exp[-N,R]. (18) 

Equations (17) and (18) with equations (10) and (11) 
are to be solved subject to the boundary condition 

R+co: U=l (19) 

and R -+ 0, the outer solution must match with the 
inner solution. 

We now assume the following series expansions for 

the outer variable U: 

u = uo+au, +O(02). (20) 

Substituting equation (20) into equation (17) yields 
the following first-order outer problem : 

l+N (21) 

with the boundary condition given by 

R-m: Uo=l (22) 

and R -+ 0, U. must match with the first-order inner 
solution. Equation (21) can be readily solved to give 

-X+/C 4N( 1 + N)F 

U,(R) = 
JK > 

2NF (23) 

JK 
where F and K are given by equations (10) and (11). 
The positive sign in front of the square root of equa- 
tion (23) has been chosen so that boundary condition 
(22) can be satisfied. It is relevant to note that equation 

which are to be solved subject to the boundary con- 
dition 

R=O: i=O (27) 

and the matching condition from the outer solution. 
We now assume the following series expansions for 

the inner variables : 

22 = ti,+ali, +O(cT2) 

d = do+o$, +O(aZ) 

R= F?^,+aR, +0(d) 
(28) 

P= Jo++F,+O(a2). 

Substituting equations (28) into equations (25)-(27) 
(10) and (11) gives the following first-order inner 
problem : 

IJo = 1+c, (29) 

^ 4: 
K” = [l+C,(l-$,)I’ 

(30) 

p, = 6; 3/= 
(31) 

NE’ 6’ 
g+- o J;oO=(l+N)+ 

[C 
A 

x ro-- J(ytN) 2 (32) 
> “I 

with boundary conditions given by 

Co(O) = 0 (33) 

and the matching condition 
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k-+co: &(ii)=l- 

where 

1 -- 
6 

+ 
J( 

;, 
4N(l +N)$ 

I- = U,(O) = -- 
a J&J O > 

2 Np,i,ll;-, 
(34) 

which is obtained from the outer solution given by 
equation (23) by letting R + 0. Numerical solutions 
of equations (29)-(34) can be obtained by the Runge- 
Kutta method. 

A composite solution for the axial velocity can be 
constructed from the first-order inner and outer solu- 
tions based on the multiplicative rule [23] as follows : 

where U,(R) is given by equation (23) and Go(&) is 
given by equations (29k(34) which are functions of 
Re,. However, it will be more meaningful to express 
the results in terms of a Reynolds number based on 
the mean velocity u$, i.e. 

Red = I&$,/V = Re, u, (36) 

where uf and u, are dimensional and dimensionless 
mean velocities defined as 

r*u* dr* 

and 

* %n 

s 

l/Y 
u, = 7 = 2y* ru dr. 

& 
(38) 

0 

Equation (38) shows that u, is a function of both 
Red and y. It follows from the definitions that the 
normalized axial velocity is given by 

u*/u; = u/u, (39) 

where u is given by equation (35) and u, is given 
by equation (38). The normalized velocity given by 
equation (39) vs the normalized coordinate (rO-r)/ro 
is plotted in Fig. 1 for a variable-porosity cylindrical 
packed column with y = 0.03 and 0.37 at different 
values of Re,. The dashed lines represent the nor- 
malized axial velocity without inertial effect (b = O), 
while the solid lines represent those with inertial effect. 
As in the previous work [ 1 S], the velocity overshoot 
occurs at a distance about 0. Id,-.O. 1 Sd, away from the 
wall. The peak velocity decreases as the value of y is 
increased. It is interesting to note that the shape of 
the axial profile depends on the value of Re, for 
Re, -c 100, but is relatively independent of Red for 
Re, > 100. 

The wall channeling effect on pressure drop wil) be 
considered next. The dimensionless pressure gradient 
based on the mean velocity is given by 

6.0 

5.0 

---- Whovt Inertia 

- With Imertio 

y zo.37 
c, XI 

N, ~2 

---- Without Inertia 

- With hwrtio 

@) 

0.2 0.4 0.6 

(ro- rI/ro 

FIG. I. Effects of wall channeling and inertia on dimen- 
sionless axial velocity in a packed tube: (a) y = 0.03; (b) 

y = 0.37. 

Kz dp* 
a,=: --- =%= (l+N)/u,,, (40) 

j.Pu; dx* u, 

where u, is given by equation (38). Equation (40) is 
plotted as solid lines in Fig. 2 as a function of Red 
at three values of y (y = 0.03, 0.074 and 0.37). For 
comparison the pressure gradient in a constant 
porosity (C, = 0) cylindrical packed column is plotted 
as dashed lines. As in the previous work [15], the 
wall channeling effect on pressure gradient is more 
pronounced in the Darcy and Forchheimer flow 
regions (Red < 100) than in the turbulent flow region 
(Red > 100). 

I02 L 

-C,*l I$‘2 

----- Cl = 0 

IO’ 

l- 

Y * 0.03 

aln 
[Y73, 

in0 L-__L.L_L________--2~ / 

‘-7 ! 
lo~l,o~ 

102 103 IO‘ 

Red 

FIG. 2. Effects of wall channeling on dimensionless pressure 
gradient in a packed tube. 
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3. THERMALLY FULLY-DEVELOPED FORCED 

CONVECTION IN A PACKED TUBE 

A thermally fully-developed flow in a tube with 
symmetric heating is defined as [24] 

a0 
-_=O 
ax* (41) 

where 

8 = T,* - T*(x*, r*) 

T,* - Tb*(X*) 

with Tz denoting the wall temperature and Tz the 
bulk temperature defined as 

c 
G 

2 T*r*u* dr* 

T,*(x*) = 
Jo 

**2 . 
470 

The conservation of energy from a differential control 
volume gives [24] 

dT,* 29, 
---c 

dx* &&ro* 
(43) 

where q\. is the heat flux at the wall, which is related 

to the heat transfer coefficient by 

qw = h(T,* - T:). (44) 

The Nusselt number for the present problem is 
defined as 

4 qwd, 
Nud = kt = kt(T,*-T,*) (45) 

where k: is the thermal conductivity of the fluid and 

(T,*-T,*)=A 
s 

l 

” (T,?j - T*)r*u* dr* (46) 
w-0 0 

which is obtained from equations (37) and (42). 
Equations (41)-(46) are applicable for a thermally 

fully-developed forced convective flow in a cylindrical 
packed tube with constant heat flux or constant wall 

temperature. The heat transfer characteristics of these 
two cases will now be considered separately. 

3.1. Constant heatjlux 
For a thermally fully-developed flow with constant 

heat flux, it can be shown that [24] 

aT* dT,*(x*) dT,*(x*) 2q, 
PC 
ax* dx* dx* (w,)fro*uZ 

(47) 

where qw is a constant. With the aid of the above 
equation, the energy equation becomes 

u* 2q, 1 d 

uz ro* r* dr* (48) 

where kz is the effective radial thermal conductivity 
which is defined as 

k,: = k:+k;. (49) 

In the above equation, k: is the stagnant thermal 
conductivity of the packed column which is given by 
the following semi-analytical expression [25] 

$= l-Ju-4*>+ 2&41-4*) 
(*_B ) 

0 

A(B,--1) 

2-- A-B, (5Oa) 

where 

and 

(for spherical particles) 

(50b) 

A = k:/k,* (5Oc) 

with k$ denoting the thermal conductivity of the solid 
particles. The quantity k$ in equation (49) is the ther- 
mal dispersion conductivity which is given by [ 141 

k,*/kf = D, Pr Red ul (51) 

where DT is an empirical constant, Pr is the Prandtl 
number of the fluid, and 1 is Van Driest’s wall function 
for radial thermal dispersion which is given by [ 141 

l = 1 _,-(+r*)lw$ (52) 

where o is an empirical constant. Equation (51) shows 
that the wall effect on radial thermal dispersion comes 
from two different sources. First, the presence of a 
wall modifies the velocity distribution u because of 
the no-slip boundary condition and the non-uniform 
porosity effects. Secondly, the presence of a wall 
would reduce the lateral mixing of fluid which is 
modeled in terms of a wall function I (w # 0). If the 
presence of the wall has no effect on lateral mixing, 
thenw=OandI= 1. 

Equations (48)-(52) are to be solved subject to the 
boundary conditions 

dT* 
r*=O: ---=O 

dr* (53) 

and 

r* = ro* : 
dT* 

-k$ ~ 
( > dr* = 4w. (54) 

Imposing boundary condition (53) equation (48) can 
be integrated twice to give 

s P 

T*(x*, r*)- T,*(x*) = 2q, 
1 

~ 
r~ r*kXr*) 

x [[$r*dr*]dr*. (55) 

Substituting the above equation into equations (46) 
and (45) yields 
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(56) 

where k,, = k,*,/kr. With the aid of equations (56) and 
(45), it can be shown that equation (55) becomes 

For prescribed values of w, D,, Red, Pr, y and A, 
equation (56) can be used for the computation of the 
Nusselt number for a thermally fully-developed forced 
convective flow in a cylindrical packed tube with con- 
stant heat flux. After the value of Nud has been deter- 
mined, equation (57) can be used for the computation 
of the dimensionless radial temperature distribution 
in the cylindrical packed tube. 

3.2. Constant wall temperature 
For the case of constant wall temperature, the 

boundary condition at the wall is given by 

r* = ro*: T* = T,* (58) 

and the symmetric boundary condition at the center- 
line of the tube is given by equation (53). From 
equations (41) and (45), it can be shown that the 
energy equation in terms of 0 for this case is 

~~[rk=~~]= -2(~)N*~~ (59) 

with boundary conditions given by 

r=t, @=O 

and 

(60) 

r = 0, 
d0 
- = 0. 
dr (61) 

Integrating equation (59) twice and imposing bound- 
ary conditions (60) and (61) give 

which is an integral equation for ~9. Numerical solu- 
tions of equation (62) can be obtained by iteration as 
follows. For given values of w, D,, Re,, Pr, y and A, 
U/U, is obtained from equations (35) and (38), and the 
first estimated values of Nuj;‘) and OciJ(r) can be 
obtained from the constant heat flux solution given by 
equations (56) and (57). Substituting these estimated 
values into the right-hand side of equation (62) gives 
an improved dimensionless temperature dist~bution 
efii l)(r). The improved value of Nu$’ ‘) can be com- 
puted according to 

Nuj;:+ 1) =:- (63) 

where 

= --2y2N&’ 8% dr. 

The iteration process terminates when 

Nuj;‘+‘)--Ntij) < 10_3 _l.l.. 
Nul;+ 1) 

3.3. Numerical results and discussion 
Experiments for forced convection of air (Pr = 0.7 

and kt = 0.027 W m-’ K-‘) in cylindrical packed 
columns composed of glass spheres (kz = 1.05 W m-’ 
K-‘) heated circumferentially with constant heat flux 
or constant wail temperature have been performed by 
Quinton and Storrow [ 191 as well as by Verschoor and 
Schuit PO], respectively. Since air (having a small 
Prandtl number) was used as the heat transfer medium 
and since the cylindrical packed tubes used in their 
experiments have a relatively high length to tube dia- 
meter ratio (L/D = 18.2 in Quinton and Storrow’s 
experiment and L/D varies from 6 to 8.5 in Verschoor 
and Schuit’s experiments), the thermal entrance length 
effect on the average Nusselt numbers may be negli- 
gibly small. Thus, the average Nusselt number pre- 
dicted from the present analysis for a fully developed 
flow can be compared with the experimental results 
presented in refs. 119, 201. 

For this purpose, computations for the Nusselt 
numbers given by equations (56) and (63) cor- 
responding to the experimental conditions were car- 
ried out with w = 1.5 and D, = 0.17. These values of 
w and DT. were determined recently by Cheng et al. 
[ 151 by matching both the predicted temperature dis- 
tribution and the Nusselt number with experimental 
data for forced convection of water in a thermally 
developing flow through a packed channel with asym- 
metric heating [15]. For comparison purposes, com- 
putations of equations (56) and (63) were also carried 
out without a wall function (w = 0). It was found that 
with the values of w = 0 and r>, = 0.05, the predicted 
Nusselt numbers are also in reasonable agreement 
with expe~mentai data, as will be discussed below. 
These findings confirm our previous experience that 
for a given value of w, one can find a value of DT such 
that the predicted Nusselt numbers would match with 
experimental data. However, different values of w 
would give different radial temperature distributions 
(see below for further discussion). Thus, a unique 
set of values w and D, can only be determined by 
matching both the radial temperature and surface 
heat flux data. 

Figure 3 is a comparison of the ex~rimentally 
dete~ined Nusselt numbers 1191 and the predicted 
Nusselt numbers (with and without a wall function) 
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FIG. 3. Comparison of predicted Nusselt numbers with experimental results [19] for a packed tube with 
constant heat flux : (a) with wall function ; (b) without wall function. 

in a packed tube with constant heat flux. Similar com- 
parisons of results for forced convection in two 
different sizes of packed tubes (D = 43 and 50 mm) 
with constant wall temperature are presented in Figs. 
4 and 5. In Fig. 4 the predicted Nusselt numbers 
are computed with a wall function (w = 1.5 and 
Lfr = 0.17) while in Fig. 5 the predicted Nusselt num- 
bers are computed without a wall function (w = 0 and 
Dr = 0.05). It is seen from Figs. 3-5 that with the 
exception of the case of D = 50 mm and d, = 8 mm 
in Fig. 4(b), the predicted Nusselt numbers with a wall 
function are in better agreement with experimental 
data. 

Numerical results for the dimensionless radial tem- 
perature distributions at different values of Red and 1 
are presented in Fig. 6 for the case of constant heat 
flux, and in Fig. 7 for the case of constant wall tem- 
perature. The solid lines in these figures represent the 

40.0 

$30.0 

Y -0 372(dp=8.Omm) 
Y G279jdp=6.Ommj 
Y:0.232(dp:SGnm) 
Y:O.186 (dp:O.Omm) 
Y ~0.139 Idp:3Dmm) 

computed radial temperature distributions with a wall 
function (w = 1.5 and D, = 0.17) while the dashed 
lines are those without a wall function (w = 0 and 
DT = 0.05). As shown in these figures, the differences 
in the predicted radial temperature distributions with 
or without a wail function are small for low Reynolds 
numbers (lie, c 100) or for low values of y (e.g. 
y = 0.03). However, for high Reynolds numbers or 
high values of y, there are marked differences in the 
shape of the radial temperature profile with or without 
a wall function. Further, it is shown in these figures 
that with a wall function the predicted temperature 
profiles are flatter and the predicted wall tem~rature 
gradients are steeper than those without a wall func- 
tion ; and that these effects are more pronounced as 
the Reynolds number is increased. Unfortunately, 
since no radial temperature data were taken by Quin- 
ton and Storrow [ 191 or by Verschoor and Schuit [20], 

A’ * 38.8 
Pr SO.7 
D *SO.mm 

FOG. 4. Comparison of predicted Nusselt numbers based on w = 1.5 and D, = 0.17 with ex~~mental 
results [20] for two packed tubes with constant wall temperature: (a) D = 43 mm; (b) D = 50 mm. 
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FIG. 5. Comparison of predicted Nusselt numbers based on w = 0 and DT = 0.05 with experimental results 
[20] for two packed tubes with constant wall temperature : (a) D = 43 mm ; (b) D = 50 mm. 

a comparison with experimental data cannot be made. 

In comparison of Figs. 5 and 6, it is shown that the 
value of y and the wall function have smaller effects 
for the case of constant heat flux than that of constant 
wall temperature. At high Reynolds numbers, the 
dimensionless radial temperature profile (and conse- 
quently the Nusselt number) becomes relatively inde- 
pendent of the thermal boundary conditions at the 
wall. 

4. CONCLUDING REMARKS 

The fluid flow and heat transfer characteristics of a 
fully-developed forced convective flow in a cylindrical 
packed tube heated circumferentially with constant 
heat flux or constant wall temperature are analyzed 
in this paper. The effects of non-Darcy and variable 
porosity are taken into consideration in the momen- 
tum equation, while the effects of transverse thermal 
dispersion and variable stagnant thermal conductivity 
are taken into consideration in the energy equation. 
However, the dispersion viscosity effect is neglected 
in the momentum equation. This is because no model 
is presently available to take into consideration this 
effect which is expected to be small. It was found that 
if the values of w = 1.5 and DT = 0.17 (determined in 
a previous paper) are used in the expressions for the 
transverse thermal dispersion conductivity, the pre- 
dicted Nusselt numbers agree with the experimental 
data. It is relevant to note that if no wall function is 
introduced and if the values of o = 0 and DT = 0.05 
are used in the computations of the energy equation, 
the predicted Nusselt numbers also agree reasonably 
well with experimental data. However, the shape of 
the temperature profiles, with or without a wall func- 
tion, is markedly different from each other. This is 
especially true at high Reynolds numbers or at high 
particle to tube diameter ratios. These findings con- 

firm our previous experience that the validity of the 
wall function concept for modeling the wall effect on 
the transverse thermal dispersion process can only be 
assessed from experiments in which both the surface 
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FIG. 6. Predicted dimensionless radial temperature profiles 
in a packed tube with constant heat flux : (a) y = 0.03 ; (b) 

y = 0.37. 
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FIG. 7. Predicted dimensionless radial temperature profiles 
in a packed tube with constant wall temperature: (a) y = 

0.03 ; y (b) = 0.37. 

heat flux and radial temperature distributions are 

measured simultaneously. 

It must be emphasized that there are a large number 

of empirical constants used in the present analysis. 

Thus, the computed heat transfer characteristics 
depend not only on the values of w and DT but also 
on the values of a, b, C, and N, used in the com- 

putations of velocity distribution. At the present time, 
there exist considerable uncertainties in the value of 
a, b, C, and N,. If any of these values is changed, the 
values of o and DT must be modified in order to match 
with experimental data. For example, if N, = 5 is used 
in the computation of the velocity distribution, the 

values of D, = 0.12 and w = 1.1 should be used so 
that the predicted heat transfer characteristics would 
match with experimental data. 
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EFFETS DE LA DISPERSION THERMIQUE TRANSVERSALE SUR LA CONVECTION 
FORCEE ETABLIE DANS LES LITS FIXES CYLINDRIQUES 

R&nun&On etudie les caracttristiques de l’tcoulement force et du transfert thermique dans un lit fixe 
tubulaire avec chauffage symetrique. On utilise le modele Darcy-Brinkman-Ergun avec variation radiale 
de la porositt approchee par une fonction exponentielle. On construit une solution composite pour le profil 
de vitesse axiale d’ecoulement hydrodynamiquement Ctabli. Est illustree l’interaction des effets d’inertie et 
de paroi sur la perte de charge et sur le profil de vitesse radiale. Les effets de la dispersion transversale et 
de la conductivite thermique variable sont pris en compte dans l’tquation de l’energie pour un Bcoulement 
thermiquement dtveloppe dans le lit cylindrique qui est chauffe a flux constant ou a temperature constante 
sur la circonference. Le concept de longueur de melange est utilise pour modtliser l’effet de la paroi sur le 
micanisme de dispersion thermique transverse et les nombres de Nusselt calcules s’accordent bien avec les 
donntes experimentales existantes. Des resultats numeriques sur les caracteristiques du transfert thermique 
dans les colonnes fixes sans introduire le concept de longueur de melange sont aussi present&s pour 

permettre unecomparaison. 

EINFLUSS DES QUERGERICHTETEN WARMETRANSPORTES AUF DIE 
VOLL-ENTWICKELTE ERZWUNGENE KONVEKTION IN ZYLINDRISCHEN 

FtiLLKoRPERSAULEN 

Zusammenfassung-Stromung und Wlrmeiibergang in einer voll-entwickelten erzwungenen Konvektions- 
striimung in einer zylindrischen Ftillkijrperslule mit symmetrischer Beheizung werden untersucht. Das 
Darcy-Brinkman-Ergun-Model1 wird als Impulsgleichung benutzt, wobei die radiale Verinderung 
der Porositat in der Fiillkiirperkolonne durch eine Exponentialfunktion naherungsweise beschrieben wird. 
Die gekoppelte Auswirkung von Tragheit und Kanalbildung an der Wand auf den Druckabfall und das 
axiale Geschwindigkeitsprofil wird gezeigt. Die Einfliisse des quergerichteten Warmetransportes und der 
verlnderlichen Warmeleitfahigkeit im Ruhezustand werden in der Energiegleichung fur die thermisch 
voll-entwickelte Stromung in der FiillkBrpersaule beriicksichtigt. Die Beheizung erfolgt am Umfang mit 
konstanter Warmestromdichte oder konstanter Wandtemperatur. Das Verfahren der Mischungslange wird 
verwendet, urn die Wandeffekte auf den quergerichteten Wlrmetransport wiederzugeben. Die berechneten 
Nusselt-Zahlen stimmen gut mit vorliegenden Versuchsergebnissen iiberein. Zum Vergleich werden such 

numerische Ergebnisse ohne Einfiihren des Mischungsweg-Ansatzes vorgestellt. 

BJIHJIHHE I-IOIIEPEsHO~ TEI’IJIOI-IPOBO~HOCTM HA I-IOJIHOCTbIO PA3BHTYIO 
BbIH431CaEHHYIO KOHBEKHHIO B HMJIHH~PHYECKRX KOJIOHHAX C 

BHYTPEHHWMH HACAAKAMH 

hOTaqE+npOBe!JeH aHaJrH3 XapaKTepHCrHK Te’IeHHR H rermoo6hreea npH IIOJIHOcTbIO pa3BHTOfi 

sbmymseHHoii KoHneKumi B cHMhfeTpmH0 HarpesaeMoi4 wi_minpHwC~oii ~py6e c eHyTpeHHmm Hacan- 

Karma. B Kaqecrne ypanHeHHK KonHwcTea nnH;KeHHK ncnonb30nanacb hfonenb Aapcw-EpHHKMaHa- 

3pryHa, a pan5ianbHoe H3MeHemie nop~crocr~ 3anonmirena n xonoririe amrporccwhnipoeanocb C 
nOMOUIbW3 3KCnOHeHnHaJrbHOii +yHKUHH. npW ,‘lOcTpOeHHH peLUeHHK i”IK aKC&%lJIbHOrO IIpO@Hnn CKO- 

pOCTU rHApOL(HHaMHYeCKH IIOJlHOcTbK) pa3BHTOTO TeYeHHll IlpHMeHeH MCTOJ, CpaEWBaeMbIX BCHMIITOTH- 

WCKHX pa3JIOlKeHHii. nOKa3aHO BJIHRHHe B3aHMOfleiicTBHK HHCpUHOHHMX H ITpHCTeHOliHbIX 3+#h%TOB Ha 

“epe”aJ, AaBAeHHK H npO&,Jlb aKCH&nbHOii CKOp-a. B ypaBHeHHH 3HeprHW &3n Te.pMHWZCKH IIOJIHOC- 

Tb~ppa3BHTOrOTe~eHUIlBKO~OHHeC3anO~HHT~eMnpHn~OKHHOMnOnepHM~yTe~OBO~nOTOKe 

ki.rm npH nocrorH~ofi TeMnepaType creHKH y4TeHbI *KTN nonepeqHofi rennonpono~ocrw w nepe- 
Memrbrx srraqeriaii x03+#uiurieriTa rennonpononriocrri B craruioriaptrohr cnyqae. Hcrronb3yercn norim3ie 
anmfbr cMememi3 an3 Monenripoeamin nnmmim npacremiblx ~+&KToB Ha nonepesayio Tennonpoeon- 

HOCTb. YCTaHOBJIeHO,'ITO TeOpeT&WXKHe WiCJla HyLXXnbTa COrJlaCylOTCK C BMeW)ILUIMHCII 3KCllepHMeH- 

TaIIbHbIMU namibnun. &In cpanHeHnK UpHBOJlKTCK TaKle pe3ynbTaTbI wcnennoro mxnenonanun 
COOTB~TCTB~KWWX rennoo6hfermbrx XapaKTepHcTHK B KOnOHHaX c 3anOnHkiTeneM, KOrJJa KOHuenwK 


